Why Brooklyn Is Not Expanding

Intro Cosmology Short Course Addendum to Lecture 2

Paul Stankus, ORNL

It's really Hubble's fault....

How much of this can I blame on the Hubble expansion?

$$\frac{\Delta d_{AB}}{d_{AB}} = \frac{(v_A - v_B)\Delta t}{d_{AB}} = \frac{H_0 d_{AB}\Delta t}{d_{AB}} = \frac{\Delta t}{H_0^{-1}}$$

$$28\text{in} \times 25\text{y}/10\text{Gyr} \approx 18\text{Å}$$

(I'll take what I can get)

A man once asked me:

"If space itself is expanding, then why isn't the distance from the Earth to the Moon increasing?"

If Earth and Moon were both in the Hubble flow:

$$\Delta d_{\text{Earth-Moon}} = \frac{\Delta t}{H_0^{-1}} d_{\text{Earth-Moon}}$$
$$= \frac{35 \text{yr} \times 384,000 \text{km}}{10 \times 10^9 \text{yr}} \approx 1.3 \text{m}$$

Retroreflector on the Moon Laser ranging good to ~3cm

An initial value problem

Assume that the Robertson-Walker metric is valid down to very small scales. How does the cosmic expansion a(t) change the relative trajectory of two particles?

A -- very small -- apparent force

Velocity: Apart

Velocity: Zero

Time

Acceleration: Apart

Acceleration: Apart

OK, but how small?

(Ans: damn darn small)

Apparent acceleration $\sim \pm (H_0)^2 \times \text{separation}$

Normal $a_{Moon-Earth} \sim d_{Moon-Earth} / (1 \text{ month})^2$ (up to 2π)

Extra
$$a_{\text{Moon-Earth}} \sim d_{\text{Moon-Earth}} (H_0)^2$$
 (up to 8π)

 $d_{Moon-Earth}/(10 \text{ Gyr})^2$

$$F_{\text{Coulomb}} = \frac{q_1 q_2}{r^2} \pm H_0^2 r$$